{ "id": "1201.0617", "version": "v3", "published": "2012-01-03T12:40:50.000Z", "updated": "2012-07-21T12:29:37.000Z", "title": "Proof of two conjectures of Z.-W. Sun on congruences for Franel numbers", "authors": [ "Victor J. W. Guo" ], "comment": "8 pages, minor changes, to appear in Integral Transforms Spec. Funct", "doi": "10.1080/10652469.2012.715160", "categories": [ "math.NT", "math.CO" ], "abstract": "For all nonnegative integers n, the Franel numbers are defined as $$ f_n=\\sum_{k=0}^n {n\\choose k}^3.$$ We confirm two conjectures of Z.-W. Sun on congruences for Franel numbers: \\sum_{k=0}^{n-1}(3k+2)(-1)^k f_k &\\equiv 0 \\pmod{2n^2}, \\sum_{k=0}^{p-1}(3k+2)(-1)^k f_k &\\equiv 2p^2 (2^p-1)^2 \\pmod{p^5}, where n is a positive integer and p>3 is a prime.", "revisions": [ { "version": "v3", "updated": "2012-07-21T12:29:37.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10", "05A19" ], "keywords": [ "franel numbers", "congruences", "conjectures" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.0617G" } } }