{ "id": "1201.0280", "version": "v1", "published": "2011-12-31T16:09:49.000Z", "updated": "2011-12-31T16:09:49.000Z", "title": "Symbolic dynamics for the $N$-centre problem at negative energies", "authors": [ "Nicola Soave", "Susanna Terracini" ], "categories": [ "math.DS" ], "abstract": "We consider the planar $N$-centre problem, with homogeneous potentials of degree $-\\a<0$, $\\a \\in [1,2)$. We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the $N$ centres in two non-empty sets.", "revisions": [ { "version": "v1", "updated": "2011-12-31T16:09:49.000Z" } ], "analyses": { "subjects": [ "70F10", "37N05", "70F15", "37J30" ], "keywords": [ "centre problem", "symbolic dynamics", "negative energies", "collisions-free periodic solutions", "non-empty sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.0280S" } } }