{ "id": "1112.6374", "version": "v1", "published": "2011-12-29T18:48:37.000Z", "updated": "2011-12-29T18:48:37.000Z", "title": "Recognizing the topology of the space of closed convex subsets of a Banach space", "authors": [ "Taras Banakh", "Ivan Hetman", "Katsuro Sakai" ], "comment": "10 pages", "categories": [ "math.GT", "math.FA", "math.GN" ], "abstract": "Let $X$ be a Banach space and $Conv_H(X)$ be the space of non-empty closed convex subsets of $X$, endowed with the Hausdorff metric $d_H$. We prove that each connected component of the space $Conv_H(X)$ is homeomorphic to one of the spaces: a singleton, the real line, a closed half-plane, the Hilbert cube multiplied by the half-line, the separable Hilbert space, or a Hilbert space of density not less than continuum.", "revisions": [ { "version": "v1", "updated": "2011-12-29T18:48:37.000Z" } ], "analyses": { "subjects": [ "57N20", "46A55", "46B26", "46B20", "52B05", "03E65" ], "keywords": [ "banach space", "non-empty closed convex subsets", "hausdorff metric", "real line", "hilbert cube" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.6374B" } } }