{ "id": "1112.6302", "version": "v1", "published": "2011-12-29T13:15:39.000Z", "updated": "2011-12-29T13:15:39.000Z", "title": "Splitting theorems on complete manifolds with Bakry-Émery curvature", "authors": [ "Jia-Yong Wu" ], "comment": "17 pages", "categories": [ "math.DG" ], "abstract": "In this paper we study some splitting properties on complete noncompact manifolds with smooth measures when $\\infty$-dimensional Bakry-\\'Emery Ricci curvature is bounded from below by some negative constant and spectrum of the weighted Laplacian has a positive lower bound. These results extend the cases of Ricci curvature and $m$-dimensional Bakry-\\'Emery Ricci curvature.", "revisions": [ { "version": "v1", "updated": "2011-12-29T13:15:39.000Z" } ], "analyses": { "subjects": [ "53C21", "53C24", "35P15" ], "keywords": [ "dimensional bakry-emery ricci curvature", "complete manifolds", "bakry-émery curvature", "splitting theorems", "complete noncompact manifolds" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.6302W" } } }