{ "id": "1112.5896", "version": "v1", "published": "2011-12-26T21:45:15.000Z", "updated": "2011-12-26T21:45:15.000Z", "title": "Fundamental domains of cluster categories inside module categories", "authors": [ "Juan Ángel Cappa", "Maria Inés Platzeck", "Idun Reiten" ], "comment": "20 pages, 9 figures", "categories": [ "math.RT" ], "abstract": "Let $H$ be a finite dimensional hereditary algebra over an algebraically closed field, and let $\\mathcal{C}_{H}$ be the corresponding cluster category. We give a description of the (standard) fundamental domain of $\\mathcal{C}_{H} $ in the bounded derived category $\\mathcal{D}^{b}(H)$, and of the cluster-tilting objects, in terms of the category $\\mod\\Gamma $\\ of finitely generated modules over a suitable tilted algebra $% \\Gamma .$ Furthermore, we apply this description to obtain (the quiver of) an arbitrary cluster-tilted algebra.", "revisions": [ { "version": "v1", "updated": "2011-12-26T21:45:15.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "18E30" ], "keywords": [ "cluster categories inside module categories", "fundamental domain", "finite dimensional hereditary algebra", "corresponding cluster category", "description" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5896A" } } }