{ "id": "1112.5772", "version": "v3", "published": "2011-12-25T09:44:43.000Z", "updated": "2012-11-27T08:59:18.000Z", "title": "Partition Calculus and Cardinal Invariants", "authors": [ "Shimon Garti", "Saharon Shelah" ], "comment": "13 pages", "journal": "Journal of Mathematical Society of Japan, 66,2 (2014)", "categories": [ "math.LO" ], "abstract": "We prove that the strong polarized relation of $\\theta$ above $\\omega$ applied simultaneously for every cardinal in the interval $[\\aleph_1,\\aleph]$ is consistent. We conclude that this positive relation is consistent for every cardinal invariant on the continuum. We show that similar results hold for a supercompact cardinal, and for a strong limit singular under some assumptions.", "revisions": [ { "version": "v3", "updated": "2012-11-27T08:59:18.000Z" } ], "analyses": { "subjects": [ "03E05", "03E35" ], "keywords": [ "cardinal invariant", "partition calculus", "similar results hold", "strong limit singular", "strong polarized relation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5772G" } } }