{ "id": "1112.5383", "version": "v1", "published": "2011-12-22T17:03:21.000Z", "updated": "2011-12-22T17:03:21.000Z", "title": "Cohomology of Deligne-Lusztig varieties for groups of type A", "authors": [ "Olivier Dudas" ], "categories": [ "math.RT" ], "abstract": "We study the cohomology of parabolic Deligne-Lusztig varieties associated to unipotent blocks of GLn(q). We show that the geometric version of Brou\\'e's conjecture over Q_\\ell, together with Craven's formula, holds for any unipotent block whenever it holds for the principal Phi_1-block, that is for the variety X(\\pi).", "revisions": [ { "version": "v1", "updated": "2011-12-22T17:03:21.000Z" } ], "analyses": { "keywords": [ "cohomology", "unipotent block", "broues conjecture", "cravens formula", "parabolic deligne-lusztig varieties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5383D" } } }