{ "id": "1112.5073", "version": "v5", "published": "2011-12-21T16:09:20.000Z", "updated": "2013-02-01T20:45:21.000Z", "title": "On symplectic automorphisms of hyperkähler fourfolds of K3^[2] type", "authors": [ "Giovanni Mongardi" ], "comment": "Final version, to appear on Mich. Math. J", "journal": "Michigan Math. J. vol. 62 no. 3 537-550 (2013)", "doi": "10.1307/mmj/1378757887", "categories": [ "math.AG" ], "abstract": "The present paper proves that finite symplectic groups of automorphisms of hyperk\\\"ahler fourfolds deformation equivalent to the Hilbert scheme of two points on a $K3$ surface are contained in the simple group $Co_1$. Then we give an example of a symplectic automorphism of order 11 on the Fano scheme of lines of a cubic fourfold.", "revisions": [ { "version": "v5", "updated": "2013-02-01T20:45:21.000Z" } ], "analyses": { "subjects": [ "14J50", "11H56" ], "keywords": [ "symplectic automorphism", "hyperkähler fourfolds", "fourfolds deformation equivalent", "finite symplectic groups", "hilbert scheme" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5073M" } } }