{ "id": "1112.5002", "version": "v2", "published": "2011-12-21T12:08:08.000Z", "updated": "2012-02-12T13:39:58.000Z", "title": "Non-colliding Brownian bridges and the asymmetric tacnode process", "authors": [ "Patrik L. Ferrari", "Balint Veto" ], "comment": "21 pages, 1 figure, LaTeX; Includes a further representation of the kernel", "journal": "Electron. J. Probab. 17 (2012), no. 44, 1-17", "doi": "10.1214/EJP.v17-1811", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider non-colliding Brownian bridges starting from two points and returning to the same position. These positions are chosen such that, in the limit of large number of bridges, the two families of bridges just touch each other forming a tacnode. We obtain the limiting process at the tacnode, the \"asymmetric tacnode process\". It is a determinantal point process with correlation kernel given by two parameters: (1) the curvature's ratio \\lambda>0 of the limit shapes of the two families of bridges, (2) a parameter \\sigma controlling the interaction on the fluctuation scale. This generalizes the result for the symmetric tacnode process (\\lambda=1 case).", "revisions": [ { "version": "v2", "updated": "2012-02-12T13:39:58.000Z" } ], "analyses": { "subjects": [ "60B20", "60G55", "60J65", "60J10" ], "keywords": [ "asymmetric tacnode process", "non-colliding brownian bridges", "determinantal point process", "curvatures ratio", "correlation kernel" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5002F" } } }