{ "id": "1112.4884", "version": "v3", "published": "2011-12-20T23:31:36.000Z", "updated": "2012-07-11T16:17:36.000Z", "title": "Minimal and maximal $p$-operator space structures", "authors": [ "Serap Oztop", "Nico Spronk" ], "comment": "10 pages, emphasis changed, since we discovered some key ideas are already known", "categories": [ "math.FA", "math.OA" ], "abstract": "We show that $L^\\infty(\\mu)$, in its capacity as multiplication operators on $L^p(\\mu)$, is minimal as a $p$-operator space for a decomposable measure $\\mu$. We conclude that $L^1(\\mu)$ has a certain maximal type $p$-operator space structure which facilitates computations with $L^1(\\mu)$ and the projective tensor product.", "revisions": [ { "version": "v3", "updated": "2012-07-11T16:17:36.000Z" } ], "analyses": { "subjects": [ "46L07", "47L25", "46G10" ], "keywords": [ "operator space structure", "maximal type", "multiplication operators", "facilitates computations", "projective tensor product" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.4884O" } } }