{ "id": "1112.4452", "version": "v2", "published": "2011-12-19T20:08:10.000Z", "updated": "2014-04-16T03:49:17.000Z", "title": "Interaction Morawetz estimate for the magnetic Schrödinger equation and applications", "authors": [ "James Colliander", "Magdalena Czubak", "Jeonghun Lee" ], "comment": "23 pages; Added some remarks in the introduction and more details in the proof of LWP and GWP, fixed typos. To appear in DIE", "categories": [ "math.AP" ], "abstract": "We establish an interaction Morawetz estimate for the magnetic Schr\\\"odinger equation for $n\\geq 3$ under certain smallness conditions on the gauge potentials, but with almost optimal decay. As an application, we prove global wellposedness and scattering in $H^1$ for the cubic defocusing magnetic Schr\\\"odinger equation for $n = 3.$", "revisions": [ { "version": "v2", "updated": "2014-04-16T03:49:17.000Z" } ], "analyses": { "keywords": [ "interaction morawetz estimate", "magnetic schrödinger equation", "application", "smallness conditions", "gauge potentials" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.4452C" } } }