{ "id": "1112.3820", "version": "v5", "published": "2011-12-16T14:30:43.000Z", "updated": "2014-07-17T21:05:36.000Z", "title": "Square-free values of f(p), f cubic", "authors": [ "H. A. Helfgott" ], "comment": "24 pages. Minimal changes", "categories": [ "math.NT" ], "abstract": "Let f\\in Z[x], deg(f)=3. Assume that f does not have repeated roots. Assume as well that, for every prime q, the inequality f(x)\\not\\equiv 0 mod q^2 has at least one solution in (Z/q^2 Z)^*. Then, under these two necessary conditions, there are infinitely many primes p such that f(p) is square-free.", "revisions": [ { "version": "v5", "updated": "2014-07-17T21:05:36.000Z" } ], "analyses": { "subjects": [ "11N32", "11D25", "11K38" ], "keywords": [ "square-free values", "necessary conditions", "inequality" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.3820H" } } }