{ "id": "1112.3772", "version": "v1", "published": "2011-12-16T12:06:23.000Z", "updated": "2011-12-16T12:06:23.000Z", "title": "Quasigeodesic flows and Möbius-like groups", "authors": [ "Steven Frankel" ], "comment": "22 pages, 5 figures", "journal": "J. Diff. Geom. 93 (2013), no. 3, 401-429", "categories": [ "math.GT", "math.DS", "math.GR" ], "abstract": "If M is a hyperbolic 3-manifold with a quasigeodesic flow then we show that \\pi_1(M) acts in a natural way on a closed disc by homeomorphisms. Consequently, such a flow either has a closed orbit or the action on the boundary circle is M\\\"obius-like but not conjugate into PSL(2, R). We conjecture that the latter possibility cannot occur.", "revisions": [ { "version": "v1", "updated": "2011-12-16T12:06:23.000Z" } ], "analyses": { "subjects": [ "57R30", "57M60", "37C10", "37D40", "37C85", "57M50", "37B45", "53C23" ], "keywords": [ "quasigeodesic flow", "möbius-like groups", "natural way", "boundary circle", "closed disc" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.3772F" } } }