{ "id": "1112.3127", "version": "v1", "published": "2011-12-14T06:09:53.000Z", "updated": "2011-12-14T06:09:53.000Z", "title": "Hooks generate the representation ring of the symmetric group", "authors": [ "Ivan Marin" ], "comment": "9 pages", "categories": [ "math.RT" ], "abstract": "We prove that the representation ring of the symmetric group on $n$ letters is generated by the exterior powers of its natural $(n-1)$-dimensional representation. The proof we give illustrates a strikingly simple formula due to Y. Dvir. We provide an application and investigate a possible generalization of this result to some other reflection groups.", "revisions": [ { "version": "v1", "updated": "2011-12-14T06:09:53.000Z" } ], "analyses": { "subjects": [ "20C30" ], "keywords": [ "symmetric group", "representation ring", "hooks generate", "strikingly simple formula", "exterior powers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.3127M" } } }