{ "id": "1112.1206", "version": "v2", "published": "2011-12-06T09:41:00.000Z", "updated": "2012-04-02T09:04:40.000Z", "title": "Sharp Weyl-Type Formulas of the Spectral Functions for Biharmonic Steklov Eigenvalues", "authors": [ "Genqian Liu" ], "comment": "24 pages. arXiv admin note: substantial text overlap with arXiv:1105.0076", "categories": [ "math.AP" ], "abstract": "In this paper, by explicitly calculating the principal symbols of pseudodifferential operators and by applying H\\\"omander's spectral function theorem, we obtain the Weyl-type asymptotic formulas with sharp remainder estimates for the counting functions of the two classes of biharmonic Steklov eigenvalues $\\lambda_k$ and $\\mu_k$ in a smooth bounded domain of a Riemannian manifold. This solves a longstanding challenging problem.", "revisions": [ { "version": "v2", "updated": "2012-04-02T09:04:40.000Z" } ], "analyses": { "subjects": [ "35P20", "58C40", "58J50" ], "keywords": [ "biharmonic steklov eigenvalues", "sharp weyl-type formulas", "spectral function theorem", "sharp remainder estimates", "weyl-type asymptotic formulas" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.1206L" } } }