{ "id": "1112.1034", "version": "v11", "published": "2011-12-05T19:38:56.000Z", "updated": "2013-10-29T15:53:47.000Z", "title": "Congruences for Franel numbers", "authors": [ "Zhi-Wei Sun" ], "comment": "12 pages. Final published version", "journal": "Adv. in Appl. Math. 51(2013), no. 4, 524-535", "categories": [ "math.NT", "math.CO" ], "abstract": "The Franel numbers given by $f_n=\\sum_{k=0}^n\\binom{n}{k}^3$ ($n=0,1,2,\\ldots$) play important roles in both combinatorics and number theory. In this paper we initiate the systematic investigation of fundamental congruences for the Franel numbers. We mainly establish for any prime $p>3$ the following congruences: \\begin{align*}\\sum_{k=0}^{p-1}(-1)^kf_k&\\equiv\\left(\\frac p3\\right)\\ \\ (\\mbox{mod}\\ p^2), \\\\ \\sum_{k=0}^{p-1}(-1)^k\\,kf_k&\\equiv-\\frac 23\\left(\\frac p3\\right)\\ \\ (\\mbox{mod}\\ p^2), \\\\ \\sum_{k=1}^{p-1}\\frac{(-1)^k}kf_k &\\equiv0\\ \\ (\\mbox{mod}\\ p^2), \\\\ \\sum_{k=1}^{p-1}\\frac{(-1)^k}{k^2}f_k&\\equiv0\\ \\ (\\mbox{mod}\\ p). \\end{align*}", "revisions": [ { "version": "v11", "updated": "2013-10-29T15:53:47.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10", "11B37", "11B75" ], "keywords": [ "franel numbers", "play important roles", "number theory", "systematic investigation", "fundamental congruences" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.1034S" } } }