{ "id": "1112.1003", "version": "v2", "published": "2011-12-05T17:11:09.000Z", "updated": "2015-03-01T13:43:31.000Z", "title": "The Parisi ultrametricity conjecture", "authors": [ "Dmitry Panchenko" ], "comment": "arXiv admin note: text overlap with arXiv:1108.0379", "journal": "Ann. of Math. (2), Vol. 177, No. 1 (2013) 383-393", "categories": [ "math.PR" ], "abstract": "In this paper we prove that the support of a random measure on the unit ball of a separable Hilbert space that satisfies the Ghirlanda-Guerra identities must be ultrametric with probability one. This implies the Parisi ultrametricity conjecture in mean-field spin glass models, such as the Sherrington-Kirkpatrick and mixed $p$-spin models, for which Gibbs' measures are known to satisfy the Ghirlanda-Guerra identities in the thermodynamic limit.", "revisions": [ { "version": "v1", "updated": "2011-12-05T17:11:09.000Z", "comment": null, "doi": null }, { "version": "v2", "updated": "2015-03-01T13:43:31.000Z" } ], "analyses": { "subjects": [ "60K35", "82B44" ], "keywords": [ "parisi ultrametricity conjecture", "ghirlanda-guerra identities", "mean-field spin glass models", "unit ball", "separable hilbert space" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.1003P" } } }