{ "id": "1112.0895", "version": "v2", "published": "2011-12-05T11:51:25.000Z", "updated": "2012-04-06T14:08:25.000Z", "title": "Markov Evolution of Continuum Particle Systems with Dispersion and Competition", "authors": [ "Dmitri Finkelshtein", "Yuri Kondratiev", "Yuri Kozitsky", "Oleksandr Kutoviy" ], "comment": "43 pages", "categories": [ "math-ph", "math.DS", "math.MP", "math.PR" ], "abstract": "We construct birth-and-death Markov evolution of states(distributions) of point particle systems in $\\mathbb{R}^d$. In this evolution, particles reproduce themselves at distant points (disperse) and die under the influence of each other (compete). The main result is a statement that the corresponding correlation functions evolve in a scale of Banach spaces and remain sub-Poissonian, and hence no clustering occurs, if the dispersion is subordinate to the competition.", "revisions": [ { "version": "v2", "updated": "2012-04-06T14:08:25.000Z" } ], "analyses": { "subjects": [ "92D25", "60J80", "82C22" ], "keywords": [ "continuum particle systems", "dispersion", "competition", "construct birth-and-death markov evolution", "corresponding correlation functions evolve" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0895F" } } }