{ "id": "1112.0752", "version": "v3", "published": "2011-12-04T13:55:51.000Z", "updated": "2014-01-13T13:23:05.000Z", "title": "Random matrices: Law of the determinant", "authors": [ "Hoi H. Nguyen", "Van Vu" ], "comment": "Published in at http://dx.doi.org/10.1214/12-AOP791 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2014, Vol. 42, No. 1, 146-167", "doi": "10.1214/12-AOP791", "categories": [ "math.PR" ], "abstract": "Let $A_n$ be an $n$ by $n$ random matrix whose entries are independent real random variables with mean zero, variance one and with subexponential tail. We show that the logarithm of $|\\det A_n|$ satisfies a central limit theorem. More precisely, \\begin{eqnarray*}\\sup_{x\\in {\\mathbf {R}}}\\biggl|{\\mathbf {P}}\\biggl(\\frac{\\log(|\\det A_n|)-({1}/{2})\\log (n-1)!}{\\sqrt{({1}/{2})\\log n}}\\le x\\biggr)-{\\mathbf {P}}\\bigl(\\mathbf {N}(0,1)\\le x\\bigr)\\biggr|\\\\\\qquad\\le\\log^{-{1}/{3}+o(1)}n.\\end{eqnarray*}", "revisions": [ { "version": "v3", "updated": "2014-01-13T13:23:05.000Z" } ], "analyses": { "keywords": [ "random matrices", "determinant", "independent real random variables", "central limit theorem", "random matrix" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0752N" } } }