{ "id": "1112.0710", "version": "v2", "published": "2011-12-04T02:08:31.000Z", "updated": "2012-05-11T21:20:26.000Z", "title": "Global well-posedness and scattering for the defocusing, energy -critical, nonlinear Schr{รถ}dinger equation in the exterior of a convex obstacle when $d = 4$", "authors": [ "Benjamin Dodson" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the energy - critical nonlinear Schr{\\\"o}dinger equation in the domain exterior to a convex obstacle is globally well - posed and scattering for initial data having finite energy. To prove this we utilize frequency localized Morawetz estimates adapted to an exterior domain.", "revisions": [ { "version": "v2", "updated": "2012-05-11T21:20:26.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "convex obstacle", "global well-posedness", "dinger equation", "nonlinear schr", "localized morawetz estimates" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0710D" } } }