{ "id": "1112.0658", "version": "v1", "published": "2011-12-03T14:54:06.000Z", "updated": "2011-12-03T14:54:06.000Z", "title": "Renewal theorems for random walks in random scenery", "authors": [ "Nadine Guillotin-Plantard", "Françoise Pène" ], "categories": [ "math.PR" ], "abstract": "Random walks in random scenery are processes defined by $Z_n:=\\sum_{k=1}^n\\xi_{X_1+...+X_k}$, where $(X_k,k\\ge 1)$ and $(\\xi_y,y\\in\\mathbb Z)$ are two independent sequences of i.i.d. random variables. We suppose that the distributions of $X_1$ and $\\xi_0$ belong to the normal domain of attraction of strictly stable distributions with index $\\alpha\\in[1,2]$ and $\\beta\\in(0,2)$ respectively. We are interested in the asymptotic behaviour as $|a|$ goes to infinity of quantities of the form $\\sum_{n\\ge 1}{\\mathbb E}[h(Z_n-a)]$ (when $(Z_n)_n$ is transient) or $\\sum_{n\\ge 1}{\\mathbb E}[h(Z_n)-h(Z_n-a)]$ (when $(Z_n)_n$ is recurrent) where $h$ is some complex-valued function defined on $\\mathbb{R}$ or $\\mathbb{Z}$.", "revisions": [ { "version": "v1", "updated": "2011-12-03T14:54:06.000Z" } ], "analyses": { "keywords": [ "random walks", "random scenery", "renewal theorems", "random variables", "independent sequences" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0658G" } } }