{ "id": "1112.0370", "version": "v3", "published": "2011-12-02T01:47:48.000Z", "updated": "2012-08-25T17:05:55.000Z", "title": "Lyapunov spectrum of invariant subbundles of the Hodge bundle", "authors": [ "Giovanni Forni", "Carlos Matheus", "Anton Zorich" ], "comment": "67 pages, 2 figures. New version based on the reports of the referees. To appear in ETDS", "journal": "Ergodic Theory and Dynamical Systems, 34:2 (2014), 353-408", "doi": "10.1017/etds.2012.148", "categories": [ "math.DS" ], "abstract": "We study the Lyapunov spectrum of the Kontsevich--Zorich cocycle on $SL(2,\\mathbb{R})$-invariant subbundles of the Hodge bundle over the support of a $SL(2,\\mathbb{R})$-invariant probability measure on the moduli space of Abelian differentials. In particular, we prove formulas for partial sums of Lyapunov exponents in terms of the second fundamental form (or Kodaira--Spencer map) of the Hodge bundle with respect to Gauss--Manin connection and investigate the relations between the central {Oseldets} subbundle and the kernel of the second fundamental form. We illustrate our conclusions in two special cases.", "revisions": [ { "version": "v3", "updated": "2012-08-25T17:05:55.000Z" } ], "analyses": { "subjects": [ "37Axx" ], "keywords": [ "hodge bundle", "invariant subbundles", "lyapunov spectrum", "second fundamental form", "invariant probability measure" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 67, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.0370F" } } }