{ "id": "1111.7212", "version": "v1", "published": "2011-11-30T15:39:31.000Z", "updated": "2011-11-30T15:39:31.000Z", "title": "Martingales and Sharp Bounds for Fourier multipliers", "authors": [ "Rodrigo BaƱuelos", "Adam O\\cekowski" ], "categories": [ "math.PR", "math.FA" ], "abstract": "Using the argument of Geiss, Montgomery-Smith and Saksman \\cite{GMSS}, and a new martingale inequality, the $L^p$--norms of certain Fourier multipliers in $\\R^d$, $d\\geq 2$, are identified. These include, among others, the second order Riesz transforms $R_j^2$, $j=1, 2,..., d$, and some of the L\\'evy multipliers studied in \\cite{BBB}, \\cite{BB}", "revisions": [ { "version": "v1", "updated": "2011-11-30T15:39:31.000Z" } ], "analyses": { "keywords": [ "fourier multipliers", "sharp bounds", "second order riesz transforms", "levy multipliers", "martingale inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.7212B" } } }