{ "id": "1111.7207", "version": "v2", "published": "2011-11-30T15:30:21.000Z", "updated": "2012-04-14T16:50:47.000Z", "title": "$W^{2,1}$ regularity for solutions of the Monge-Ampère equation", "authors": [ "Guido De Philippis", "Alessio Figalli" ], "comment": "12 pages, no figures", "categories": [ "math.AP" ], "abstract": "In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Amp\\`ere equation, with right hand side bounded away from zero and infinity, is $W_{\\rm loc}^{2,1}$. This is obtained by showing higher integrability a-priori estimates for $D^2 u$, namely $D^2 u \\in L\\log^k L$ for any $k\\in \\mathbb N$.", "revisions": [ { "version": "v2", "updated": "2012-04-14T16:50:47.000Z" } ], "analyses": { "keywords": [ "monge-ampère equation", "regularity", "showing higher integrability a-priori estimates", "right hand side bounded away", "strictly convex alexandrov solution" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.7207D" } } }