{ "id": "1111.7029", "version": "v1", "published": "2011-11-30T01:52:00.000Z", "updated": "2011-11-30T01:52:00.000Z", "title": "Extremal graphs for clique-paths", "authors": [ "Roman Glebov" ], "comment": "12 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "In this paper we deal with a Tur\\'an-type problem: given a positive integer n and a forbidden graph H, how many edges can there be in a graph on n vertices without a subgraph H? How does a graph look like if it has this extremal edge number? The forbidden graph in this article is a clique-path: a path of length k where each edge is extended to an r-clique, r >2. We determine both the extremal number and the extremal graphs for sufficiently large n.", "revisions": [ { "version": "v1", "updated": "2011-11-30T01:52:00.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "extremal graphs", "clique-path", "forbidden graph", "extremal edge number", "turan-type problem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.7029G" } } }