{ "id": "1111.6718", "version": "v1", "published": "2011-11-29T07:54:59.000Z", "updated": "2011-11-29T07:54:59.000Z", "title": "Caliber numbers of real quadratic fields", "authors": [ "Byungheup Jun", "Jungyun Lee" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We obtain lower bound of caliber number of real quadratic field $K=\\FQ(\\sqrt{d})$ using splitting primes in $K$. We find all real quadratic fields of caliber number 1 and find all real quadratic fields of caliber number 2 if $d$ is not 5 modulo 8. In both cases, we don't rely on the assumption on $\\zeta_K(1/2)$.", "revisions": [ { "version": "v1", "updated": "2011-11-29T07:54:59.000Z" } ], "analyses": { "keywords": [ "real quadratic field", "caliber number", "lower bound", "splitting primes" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6718J" } } }