{ "id": "1111.6635", "version": "v1", "published": "2011-11-28T22:09:06.000Z", "updated": "2011-11-28T22:09:06.000Z", "title": "The knot Floer complex and the smooth concordance group", "authors": [ "Jennifer Hom" ], "comment": "25 pages, 5 figures", "categories": [ "math.GT" ], "abstract": "We define a new smooth concordance homomorphism based on the knot Floer complex and an associated concordance invariant, epsilon. As an application, we show that an infinite family of topologically slice knots are independent in the smooth concordance group.", "revisions": [ { "version": "v1", "updated": "2011-11-28T22:09:06.000Z" } ], "analyses": { "subjects": [ "57M25", "57R58" ], "keywords": [ "knot floer complex", "smooth concordance group", "smooth concordance homomorphism", "topologically slice knots", "associated concordance invariant" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6635H" } } }