{ "id": "1111.6466", "version": "v2", "published": "2011-11-28T15:11:56.000Z", "updated": "2011-12-23T16:26:01.000Z", "title": "A Central Limit Theorem for the Poisson-Voronoi Approximation", "authors": [ "Matthias Schulte" ], "comment": "22 pages, modified references", "categories": [ "math.PR", "math.MG" ], "abstract": "For a compact convex set $K$ and a Poisson point process $\\eta$, the union of all Voronoi cells with a nucleus in $K$ is the Poisson-Voronoi approximation of $K$. Lower and upper bounds for the variance and a central limit theorem for the volume of the Poisson-Voronoi approximation are shown. The proofs make use of so called Wiener-It\\^o chaos expansions and the central limit theorem is based on a more abstract central limit theorem for Poisson functionals, which is also derived.", "revisions": [ { "version": "v2", "updated": "2011-12-23T16:26:01.000Z" } ], "analyses": { "subjects": [ "60D05", "60F05", "60G55", "60H07" ], "keywords": [ "poisson-voronoi approximation", "abstract central limit theorem", "compact convex set", "poisson point process", "poisson functionals" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6466S" } } }