{ "id": "1111.6406", "version": "v3", "published": "2011-11-28T11:14:21.000Z", "updated": "2013-03-26T11:44:12.000Z", "title": "Discrete components in restriction of unitary representations of rank one semisimple Lie groups", "authors": [ "Genkai Zhang" ], "comment": "Revised version", "categories": [ "math.RT" ], "abstract": "We consider spherical principal series representations of the semisimple Lie group of rank one $G=SO(n, 1; \\mathbb K)$, $\\mathbb K=\\br, \\bc, \\bh$. There is a family of unitarizable representations $\\pi_{\\nu}$ of $G$ for $\\nu$ in an interval on $\\mathbb R^+$, the so-called complementary series, and subquotient or subrepresentations of $G$ for $\\nu$ being negative integers. We consider the restriction of $(\\pi_{\\nu}, G)$ under the subgroup $H=SO(n-1, 1; \\mathbb K)$. We prove the appearing of discrete components. The corresponding results for the exceptional Lie group $F_{4(-20)}$ and its subgroup $Spin(8,1)$ are also obtained.", "revisions": [ { "version": "v3", "updated": "2013-03-26T11:44:12.000Z" } ], "analyses": { "keywords": [ "semisimple lie group", "discrete components", "unitary representations", "restriction", "exceptional lie group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6406Z" } } }