{ "id": "1111.6383", "version": "v2", "published": "2011-11-28T09:53:12.000Z", "updated": "2013-10-05T16:51:24.000Z", "title": "Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential", "authors": [ "Cédric Bernardin", "François Huveneers" ], "categories": [ "math-ph", "math.MP" ], "abstract": "We study the thermal properties of a pinned disordered harmonic chain weakly perturbed by a noise and an anharmonic potential. The noise is controlled by a parameter $\\lambda \\rightarrow 0$, and the anharmonicity by a parameter $\\lambda' \\le \\lambda$. Let $\\kappa$ be the conductivity of the chain, defined through the Green-Kubo formula. Under suitable hypotheses, we show that $\\kappa = \\mathcal O (\\lambda)$ and, in the absence of anharmonic potential, that $\\kappa \\sim \\lambda$. This is in sharp contrast with the ordered chain for which $\\kappa \\sim 1/\\lambda$, and so shows the persitence of localization effects for a non-integrable dynamics.", "revisions": [ { "version": "v2", "updated": "2013-10-05T16:51:24.000Z" } ], "analyses": { "keywords": [ "anharmonic potential", "small perturbation", "localization effects", "pinned disordered harmonic chain", "green-kubo formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6383B" } } }