{ "id": "1111.6358", "version": "v1", "published": "2011-11-28T07:25:54.000Z", "updated": "2011-11-28T07:25:54.000Z", "title": "Bounds for tail probabilities of martingales using skewness and kurtosis", "authors": [ "Vidmantas Bentkus", "Tomas Juškevičius" ], "comment": "Lithuanian Mathematical Journal (2008)", "categories": [ "math.PR" ], "abstract": "Let $M_n= \\fsu X1n$ be a sum of independent random variables such that $ X_k\\leq 1$, $\\E X_k =0$ and $\\E X_k^2=\\s_k^2$ for all $k$. Hoeffding 1963, Theorem 3, proved that $$\\P{M_n \\geq nt}\\leq H^n(t,p),\\quad H(t,p)= \\bgl(1+qt/p\\bgr)^{p +qt} \\bgl({1-t}\\bgr)^{q -qt}$$ with $$q=\\ffrac 1{1+\\s^2},\\quad p=1-q, \\quad \\s^2 =\\ffrac {\\s_1^2+...+\\s_n^2}n,\\quad 0