{ "id": "1111.6261", "version": "v2", "published": "2011-11-27T14:36:57.000Z", "updated": "2012-01-09T17:10:27.000Z", "title": "On the number of Hamilton cycles in pseudo-random graphs", "authors": [ "Michael Krivelevich" ], "categories": [ "math.CO" ], "abstract": "We prove that if G is an (n,d,lambda)-graph (a d-regular graph on n vertices, all of whose non-trivial eigenvalues are at most lambda) and the following conditions are satisfied: 1. d/lambda >= (log n)^{1+epsilon} for some constant epsilon>0; 2.log d * lod (d/lambda) >> log n, then the number of Hamilton cycles in G is n!(d/n)^n(1+o(1))^n.", "revisions": [ { "version": "v2", "updated": "2012-01-09T17:10:27.000Z" } ], "analyses": { "subjects": [ "05C45", "05C80", "05C50" ], "keywords": [ "hamilton cycles", "pseudo-random graphs", "non-trivial eigenvalues", "d-regular graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.6261K" } } }