{ "id": "1111.6129", "version": "v1", "published": "2011-11-26T02:09:03.000Z", "updated": "2011-11-26T02:09:03.000Z", "title": "Energy dissipation and switching delay in stress-induced switching of multiferroic devices in the presence of thermal fluctuations", "authors": [ "Kuntal Roy", "Supriyo Bandyopadhyay", "Jayasimha Atulasimha" ], "journal": "J. Appl. Phys. 112, 023914 (2012)", "doi": "10.1063/1.4737792", "categories": [ "cond-mat.mes-hall" ], "abstract": "Switching the magnetization of a shape-anisotropic 2-phase multiferroic nanomagnet with voltage-generated stress is known to dissipate very little energy ($<$ 1 aJ for a switching time of $\\sim$0.5 ns) at 0 K temperature. Here, we show by solving the stochastic Landau-Lifshitz-Gilbert equation that switching can be carried out with $\\sim$100% probability in less than 1 ns while dissipating less than 2 aJ at {\\it room temperature}. This makes nanomagnetic logic and memory systems, predicated on stress-induced magnetic reversal, one of the most energy-efficient computing hardware extant. We also study the dependence of energy dissipation, switching delay, and the critical stress needed to switch, on the rate at which stress is ramped up or down.", "revisions": [ { "version": "v1", "updated": "2011-11-26T02:09:03.000Z" } ], "analyses": { "subjects": [ "75.85.+t", "75.50.Tt", "75.60.Ej", "75.60.Jk", "75.75.-c" ], "keywords": [ "energy dissipation", "switching delay", "thermal fluctuations", "multiferroic devices", "stress-induced switching" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "Journal of Applied Physics", "year": 2012, "month": "Jul", "volume": 112, "number": 2, "pages": 3914 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012JAP...112b3914R" } } }