{ "id": "1111.5879", "version": "v1", "published": "2011-11-25T01:46:10.000Z", "updated": "2011-11-25T01:46:10.000Z", "title": "Hölder Continuity of the Data to Solution Map for HR in the Weak Topology", "authors": [ "David Karapetyan" ], "comment": "12 pages, no figures", "categories": [ "math.AP" ], "abstract": "It is shown that the data to solution map for the hyperelastic rod equation is H\\\"older continuous from bounded sets of Sobolev spaces with exponent $s > 3/2$ measured in a weaker Sobolev norm with index $r < s$ in both the periodic and non-periodic cases. The proof is based on energy estimates coupled with a delicate commutator estimate and multiplier estimate.", "revisions": [ { "version": "v1", "updated": "2011-11-25T01:46:10.000Z" } ], "analyses": { "subjects": [ "35Q53" ], "keywords": [ "solution map", "weak topology", "hölder continuity", "hyperelastic rod equation", "delicate commutator estimate" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.5879K" } } }