{ "id": "1111.5730", "version": "v2", "published": "2011-11-24T11:32:49.000Z", "updated": "2012-03-05T15:35:11.000Z", "title": "Experimental verification of PbBi$_{2}$Te$_{4}$ as a 3D topological insulator", "authors": [ "K. Kuroda", "H. Miyahara", "M. Ye", "S. V. Eremeev", "Yu. M. Koroteev", "E. E. Krasovskii", "E. V. Chulkov", "S. Hiramoto", "C. Moriyoshi", "Y. Kuroiwa", "K. Miyamoto", "T. Okuda", "M. Arita", "K. Shimada", "H. Namatame", "M. Taniguchi", "Y. Ueda", "A. Kimura" ], "comment": "5 pages, 5 figures, accepted for publication in Phys. Rev. Lett", "categories": [ "cond-mat.mes-hall" ], "abstract": "The first experimental evidence is presented of the topological insulator state in PbBi$_{2}$Te$_{4}$. A single surface Dirac cone is observed by angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. Topological invariants $\\mathbb{Z}_2$ are calculated from the {\\it ab initio} band structure to be 1; (111). The observed two-dimensional iso-energy contours in the bulk energy gap are found to be the largest among the known three-dimensional topological insulators. This opens a pathway to achieving a sufficiently large spin current density in future spintronic devices.", "revisions": [ { "version": "v2", "updated": "2012-03-05T15:35:11.000Z" } ], "analyses": { "subjects": [ "73.20.-r", "71.20.-b", "75.70.Tj", "79.60.-i" ], "keywords": [ "3d topological insulator", "experimental verification", "single surface dirac cone", "sufficiently large spin current density", "first experimental evidence" ], "tags": [ "journal article" ], "publication": { "doi": "10.1103/PhysRevLett.108.206803", "journal": "Physical Review Letters", "year": 2012, "month": "May", "volume": 108, "number": 20, "pages": 206803 }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012PhRvL.108t6803K" } } }