{ "id": "1111.5323", "version": "v1", "published": "2011-11-22T20:52:50.000Z", "updated": "2011-11-22T20:52:50.000Z", "title": "A Lichnerowicz estimate for the first eigenvalue of convex domains in Kähler manifolds", "authors": [ "Boris Kolev", "Vincent Guedj", "Nader Yeganefar" ], "comment": "9 pages", "journal": "Analysis \\& PDE 6, 5 (2013) 1001-1012", "doi": "10.2140/apde.2013.6.1001", "categories": [ "math.DG", "math.CV" ], "abstract": "In this article, we prove a Lichnerowicz estimate for a compact convex domain of a K\\\"ahler manifold whose Ricci curvature satisfies $\\Ric \\ge k$ for some constant $k>0$. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field. We show that a ball of sufficiently large radius in complex projective space provides an example of a strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails.", "revisions": [ { "version": "v1", "updated": "2011-11-22T20:52:50.000Z" } ], "analyses": { "keywords": [ "first eigenvalue", "kähler manifolds", "nontrivial holomorphic vector field", "compact convex domain", "ricci curvature satisfies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.5323K" } } }