{ "id": "1111.4838", "version": "v1", "published": "2011-11-21T11:40:01.000Z", "updated": "2011-11-21T11:40:01.000Z", "title": "Quantization of some moduli spaces of parabolic vector bundles on CP^1", "authors": [ "Indranil Biswas", "Carlos Florentino", "José Mourão", "João P. Nunes" ], "comment": "17 pages", "categories": [ "math.AG", "math-ph", "math.MP", "math.SG" ], "abstract": "We address quantization of the natural symplectic structure on a moduli space of parabolic vector bundles of parabolic degree zero over $\\mathbf{CP}^1$ with four parabolic points and parabolic weights in {0,1/2}. Identifying such parabolic bundles as vector bundles on an elliptic curve, we obtain explicit expressions for the corresponding non-abelian theta functions. These non-abelian theta functions are described in terms of certain naturally defined distributions on the compact group SU(2).", "revisions": [ { "version": "v1", "updated": "2011-11-21T11:40:01.000Z" } ], "analyses": { "subjects": [ "53D50", "14H60" ], "keywords": [ "parabolic vector bundles", "moduli space", "parabolic degree zero", "corresponding non-abelian theta functions", "natural symplectic structure" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.4838B" } } }