{ "id": "1111.4664", "version": "v5", "published": "2011-11-20T19:01:25.000Z", "updated": "2013-02-13T20:58:09.000Z", "title": "Homotopy invariance of non-stable K_1-functors", "authors": [ "Anastasia Stavrova" ], "comment": "40 pages (font size enlarged)", "categories": [ "math.AG", "math.GR", "math.KT" ], "abstract": "Let G be reductive algebraic group over a field k, such that every semisimple normal subgroup of G has isotropic rank >=2. Let K_1^G be the non-stable K_1-functor associated to G (also called the Whitehead group of G in the field case). We show that K_1^G(k)=K_1^G(k[X_1,...,X_n]) for any n>= 1. This implies that K_1^G is A^1-homotopy invariant on the category of regular k-algebras, if k is perfect. If k is infinite perfect, one also deduces that K_1^G(R)-> K_1^G(K) is injective for any regular local k-algebra R with the fraction field K.", "revisions": [ { "version": "v5", "updated": "2013-02-13T20:58:09.000Z" } ], "analyses": { "subjects": [ "19B99", "20G07", "20G15", "20G35" ], "keywords": [ "homotopy invariance", "non-stable", "regular local k-algebra", "semisimple normal subgroup", "fraction field" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.4664S" } } }