{ "id": "1111.4475", "version": "v2", "published": "2011-11-18T20:48:16.000Z", "updated": "2012-04-12T13:48:22.000Z", "title": "Perturbation theory for normal operators", "authors": [ "Armin Rainer" ], "comment": "32 pages, Remark 7.5 on m-sectorial operators added, accepted for publication in Trans. Amer. Math. Soc", "journal": "Trans. Amer. Math. Soc., 365 (2013), 5545--5577", "doi": "10.1090/S0002-9947-2013-05854-0", "categories": [ "math.FA", "math.AG" ], "abstract": "Let $E \\ni x\\mapsto A(x)$ be a $\\mathscr{C}$-mapping with values unbounded normal operators with common domain of definition and compact resolvent. Here $\\mathscr{C}$ stands for $C^\\infty$, $C^\\omega$ (real analytic), $C^{[M]}$ (Denjoy--Carleman of Beurling or Roumieu type), $C^{0,1}$ (locally Lipschitz), or $C^{k,\\alpha}$. The parameter domain $E$ is either $\\mathbb R$ or $\\mathbb R^n$ or an infinite dimensional convenient vector space. We completely describe the $\\mathscr{C}$-dependence on $x$ of the eigenvalues and the eigenvectors of $A(x)$. Thereby we extend previously known results for self-adjoint operators to normal operators, partly improve them, and show that they are best possible. For normal matrices $A(x)$ we obtain partly stronger results.", "revisions": [ { "version": "v2", "updated": "2012-04-12T13:48:22.000Z" } ], "analyses": { "subjects": [ "26C10", "26E10", "32B20", "47A55" ], "keywords": [ "perturbation theory", "infinite dimensional convenient vector space", "values unbounded normal operators", "compact resolvent", "partly stronger results" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.4475R" } } }