{ "id": "1111.4231", "version": "v1", "published": "2011-11-17T22:15:24.000Z", "updated": "2011-11-17T22:15:24.000Z", "title": "The energy decay and asymptotics for a class of semilinear wave equations in two space dimensions", "authors": [ "Soichiro Katayama", "Daisuke Murotani", "Hideaki Sunagawa" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "We consider semilinear wave equations with small initial data in two space dimensions. For a class of wave equations with cubic nonlinearity, we show the global existence of small amplitude solutions, and give an asymptotic description of the solution as $t \\to \\infty$ uniformly in $x \\in {\\mathbb R}^2$. In particular, our result implies the decay of the energy when the nonlinearity is dissipative.", "revisions": [ { "version": "v1", "updated": "2011-11-17T22:15:24.000Z" } ], "analyses": { "subjects": [ "35L70", "34B40" ], "keywords": [ "semilinear wave equations", "space dimensions", "energy decay", "small initial data", "small amplitude solutions" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.4231K" } } }