{ "id": "1111.4047", "version": "v1", "published": "2011-11-17T10:10:36.000Z", "updated": "2011-11-17T10:10:36.000Z", "title": "Some Generalizations of the MacMahon Master Theorem", "authors": [ "Michael P. Tuite" ], "comment": "16 pages, 4 figures", "journal": "Journal of Combinatorial Theory Series A 120 (2013) 92", "categories": [ "math.CO" ], "abstract": "We consider a number of generalizations of the $\\beta$-extended MacMahon Master Theorem for a matrix. The generalizations are based on replacing permutations on multisets formed from matrix indices by partial permutations or derangements over matrix or submatrix indices.", "revisions": [ { "version": "v1", "updated": "2011-11-17T10:10:36.000Z" } ], "analyses": { "keywords": [ "generalizations", "extended macmahon master theorem", "partial permutations", "submatrix indices", "replacing permutations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.4047T" } } }