{ "id": "1111.3719", "version": "v1", "published": "2011-11-16T07:42:02.000Z", "updated": "2011-11-16T07:42:02.000Z", "title": "A sharp equivalence between $H^\\infty$ functional calculus and square function estimates", "authors": [ "Christian Le Merdy" ], "categories": [ "math.FA" ], "abstract": "Let T_t = e^{-tA} be a bounded analytic semigroup on Lp, with 1
\\frac{\\pi}{2}. We show that this actually holds true for some \\theta<\\frac{\\pi}{2}.", "revisions": [ { "version": "v1", "updated": "2011-11-16T07:42:02.000Z" } ], "analyses": { "subjects": [ "47A60", "47D06" ], "keywords": [ "square function estimates", "functional calculus", "sharp equivalence", "bounded analytic semigroup", "holds true" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3719L" } } }