{ "id": "1111.3515", "version": "v1", "published": "2011-11-15T12:21:14.000Z", "updated": "2011-11-15T12:21:14.000Z", "title": "Automorphisms of trivalent graphs", "authors": [ "Silvia Benvenuti", "Riccardo Piergallini" ], "comment": "28 pages, 35 eps figures", "categories": [ "math.GT" ], "abstract": "Let $G_{g,b}$ be the set of all uni/trivalent graphs representing the combinatorial structures of pant decompositions of the oriented surface of genus $g$ with $b$ boundary components. We describe the set $A_{g,b}$ of all automorphisms of graphs in $G_{g,b}$ showing that, up to suitable moves changing the graph within $G_{g,b}$, any such automorphism can be reduced to elementary switches of adjacent edges.", "revisions": [ { "version": "v1", "updated": "2011-11-15T12:21:14.000Z" } ], "analyses": { "subjects": [ "20B25", "57M50", "05C25" ], "keywords": [ "automorphism", "pant decompositions", "boundary components", "combinatorial structures", "elementary switches" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3515B" } } }