{ "id": "1111.3403", "version": "v1", "published": "2011-11-15T01:34:18.000Z", "updated": "2011-11-15T01:34:18.000Z", "title": "Upper bounds on the smallest size of a complete arc in the plane PG(2,q)", "authors": [ "Daniele Bartoli", "Alexander A. Davydov", "Giorgio Faina", "Stefano Marcugini", "Fernanda Pambianco" ], "comment": "21 pages, 4 figures, 5 tables. arXiv admin note: substantial text overlap with arXiv:1011.3347", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "New upper bounds on the smallest size t_{2}(2,q) of a complete arc in the projective plane PG(2,q) are obtained for q <= 9109. From these new bounds it follows that for q <= 2621 and q = 2659,2663,2683,2693,2753,2801, the relation t_{2}(2,q) < 4.5\\sqrt{q} holds. Also, for q <= 5399 and q = 5413,5417,5419,5441,5443,5471,5483,5501,5521, we have t_{2}(2,q) < 4.8\\sqrt{q}. Finally, for q <= 9067 it holds that t_{2}(2,q) < 5\\sqrt{q}. The new upper bounds are obtained by finding new small complete arcs with the help of a computer search using randomized greedy algorithms.", "revisions": [ { "version": "v1", "updated": "2011-11-15T01:34:18.000Z" } ], "analyses": { "subjects": [ "51E21", "51E22", "94B05" ], "keywords": [ "upper bounds", "smallest size", "small complete arcs", "projective plane pg", "computer search" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3403B" } } }