{ "id": "1111.3253", "version": "v2", "published": "2011-11-14T15:48:24.000Z", "updated": "2011-11-18T12:02:28.000Z", "title": "Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars", "authors": [ "Diogo Diniz", "Gustavo Muñoz-Fernández", "Daniel Pellegrino", "Juan B. Seoane-Sepúlveda" ], "categories": [ "math.FA" ], "abstract": "The Bohnenblust-Hille inequality was obtained in 1931 and (in the case of real scalars) asserts that for every positive integer $N$ and every $m$-linear mapping $T:\\ell_{\\infty}^{N}\\times...\\times\\ell_{\\infty}^{N}\\rightarrow \\mathbb{R}$ one has (\\sum\\limits_{i_{1},...,i_{m}=1}^{N}|T(e_{i_{^{1}}},...,e_{i_{m}})|^{\\frac{2m}{m+1}})^{\\frac{m+1}{2m}}\\leq C_{m}\\VertT\\Vert, for some positive constant $C_{m}$. Since then, several authors obtained upper estimates for the values of $C_{m}$. However, the novelty presented in this short note is that we provide lower (and non-trivial) bounds for $C_{m}$.", "revisions": [ { "version": "v2", "updated": "2011-11-18T12:02:28.000Z" } ], "analyses": { "keywords": [ "bohnenblust-hille inequality", "real scalars", "lower bounds", "upper estimates", "short note" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3253D" } } }