{ "id": "1111.3162", "version": "v4", "published": "2011-11-14T10:05:04.000Z", "updated": "2014-07-04T12:20:09.000Z", "title": "Discretized normal approximation by Stein's method", "authors": [ "Xiao Fang" ], "comment": "Published in at http://dx.doi.org/10.3150/13-BEJ527 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)", "journal": "Bernoulli 2014, Vol. 20, No. 3, 1404-1431", "doi": "10.3150/13-BEJ527", "categories": [ "math.PR" ], "abstract": "We prove a general theorem to bound the total variation distance between the distribution of an integer valued random variable of interest and an appropriate discretized normal distribution. We apply the theorem to 2-runs in a sequence of i.i.d. Bernoulli random variables, the number of vertices with a given degree in the Erd\\\"{o}s-R\\'{e}nyi random graph, and the uniform multinomial occupancy model.", "revisions": [ { "version": "v4", "updated": "2014-07-04T12:20:09.000Z" } ], "analyses": { "keywords": [ "discretized normal approximation", "steins method", "uniform multinomial occupancy model", "bernoulli random variables", "total variation distance" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3162F" } } }