{ "id": "1111.3142", "version": "v1", "published": "2011-11-14T08:57:10.000Z", "updated": "2011-11-14T08:57:10.000Z", "title": "Fibonacci-like growth of numerical semigroups of a given genus", "authors": [ "Alex Zhai" ], "comment": "30 pages", "categories": [ "math.CO" ], "abstract": "We give an asymptotic estimate of the number of numerical semigroups of a given genus. In particular, if $n_g$ is the number of numerical semigroups of genus $g$, we prove that $n_g$ tends to $S \\phi^g$, where $\\phi$ is the golden ratio, and $S$ is a constant, resolving several related conjectures concerning the growth of $n_g$. In addition, we show that the proportion of numerical semigroups of genus $g$ satisfying $f < 3m$ approaches 1 as $g \\rightarrow \\infty$, where $m$ is the multiplicity and $f$ is the Frobenius number.", "revisions": [ { "version": "v1", "updated": "2011-11-14T08:57:10.000Z" } ], "analyses": { "keywords": [ "numerical semigroups", "fibonacci-like growth", "asymptotic estimate", "frobenius number", "golden ratio" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3142Z" } } }