{ "id": "1111.3112", "version": "v1", "published": "2011-11-14T06:39:09.000Z", "updated": "2011-11-14T06:39:09.000Z", "title": "Landau and Gruss type inequalities for inner product type integral transformers in norm ideals", "authors": [ "Danko R. Jocic", "Dorde E. Krtinic", "Mohammad Sal Moslehian" ], "comment": "21 pages, to appear in Math. Inequal. Appl. (MIA)", "journal": "Math. Inequal. Appl. 16 (2013), no. 1, 109-125", "categories": [ "math.FA", "math.CA", "math.OA" ], "abstract": "For a probability measure $\\mu$ and for square integrable fields $(\\mathscr{A}_t)$ and $(\\mathscr{B}_t)$ ($t\\in\\Omega$) of commuting normal operators we prove Landau type inequality \\llu\\int_\\Omega\\mathscr{A}_tX\\mathscr{B}_td\\mu(t)- \\int_\\Omega\\mathscr{A}_t\\,d\\mu(t)X \\int_\\Omega\\mathscr{B}_t\\,d\\mu(t) \\rru \\le \\llu \\sqrt{\\,\\int_\\Omega|\\mathscr{A}_t|^2\\dt-|\\int_\\Omega\\mathscr{A}_t\\dt|^2}X \\sqrt{\\,\\int_\\Omega|\\mathscr{B}_t|^2 \\dt-|\\int_\\Omega\\mathscr{B}_t\\dt|^2} \\rru for all $X\\in\\mathcalb{B}(\\mathcal{H})$ and for all unitarily invariant norms $\\lluo\\cdot\\rruo$. For Schatten $p$-norms similar inequalities are given for arbitrary double square integrable fields. Also, for all bounded self-adjoint fields satisfying $C\\le\\mathscr{A}_t\\le D$ and $E\\le\\mathscr{B}_t\\le F$ for all $t\\in\\Omega $ and some bounded self-adjoint operators $C,D,E$ and $F$, then for all $X\\in\\ccu$ we prove Gr\\\"uss type inequality \\llu\\int_\\Omega\\mathscr{A}_tX\\mathscr{B}_t \\dt- \\int_\\Omega \\mathscr{A}_t\\,d\\mu(t)X \\int_\\Omega\\mathscr{B}_t\\,d\\mu(t) \\rru\\leq \\frac{\\|D-C\\|\\cdot\\|F-E\\|}4\\cdot\\lluo X\\rruo. More general results for arbitrary bounded fields are also given.", "revisions": [ { "version": "v1", "updated": "2011-11-14T06:39:09.000Z" } ], "analyses": { "subjects": [ "47A63", "46L05", "47B10", "47A30", "47B15" ], "keywords": [ "inner product type integral transformers", "gruss type inequalities", "type inequality", "norm ideals", "double square integrable fields" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.3112J" } } }