{ "id": "1111.2868", "version": "v1", "published": "2011-11-11T21:15:55.000Z", "updated": "2011-11-11T21:15:55.000Z", "title": "The Gelfand-Zeitlin integrable system and K-orbits on the flag variety", "authors": [ "Mark Colarusso", "Sam Evens" ], "comment": "33 pages", "categories": [ "math.RT" ], "abstract": "In this expository paper, we provide an overview of the Gelfand-Zeiltin integrable system on the Lie algebra of $n\\times n$ complex matrices $\\fgl(n,\\C)$ introduced by Kostant and Wallach in 2006. We discuss results concerning the geometry of the set of strongly regular elements, which consists of the points where Gelfand-Zeitlin flow is Lagrangian. We use the theory of $K_{n}=GL(n-1,\\C)\\times GL(1,\\C)$-orbits on the flag variety $\\mathcal{B}_{n}$ of $GL(n,\\C)$ to describe the strongly regular elements in the nilfiber of the moment map of the system. We give an overview of the general theory of orbits of a symmetric subgroup of a reductive algebraic group acting on its flag variety, and illustrate how the general theory can be applied to understand the specific example of $K_{n}$ and $GL(n,\\C)$.", "revisions": [ { "version": "v1", "updated": "2011-11-11T21:15:55.000Z" } ], "analyses": { "keywords": [ "flag variety", "gelfand-zeitlin integrable system", "strongly regular elements", "general theory", "specific example" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.2868C" } } }