{ "id": "1111.2414", "version": "v1", "published": "2011-11-10T08:16:54.000Z", "updated": "2011-11-10T08:16:54.000Z", "title": "Multifractal analysis of Bernoulli convolutions associated with Salem numbers", "authors": [ "De-Jun Feng" ], "comment": "26 pages. Accepted by Adv. Math", "categories": [ "math.CA", "math.DS", "math.NT" ], "abstract": "We consider the multifractal structure of the Bernoulli convolution $\\nu_{\\lambda}$, where $\\lambda^{-1}$ is a Salem number in $(1,2)$. Let $\\tau(q)$ denote the $L^q$ spectrum of $\\nu_\\lambda$. We show that if $\\alpha \\in [\\tau'(+\\infty), \\tau'(0+)]$, then the level set $$E(\\alpha):={x\\in \\R:\\; \\lim_{r\\to 0}\\frac{\\log \\nu_\\lambda([x-r, x+r])}{\\log r}=\\alpha}$$ is non-empty and $\\dim_HE(\\alpha)=\\tau^*(\\alpha)$, where $\\tau^*$ denotes the Legendre transform of $\\tau$. This result extends to all self-conformal measures satisfying the asymptotically weak separation condition. We point out that the interval $[\\tau'(+\\infty), \\tau'(0+)]$ is not a singleton when $\\lambda^{-1}$ is the largest real root of the polynomial $x^{n}-x^{n-1}-... -x+1$, $n\\geq 4$. An example is constructed to show that absolutely continuous self-similar measures may also have rich multifractal structures.", "revisions": [ { "version": "v1", "updated": "2011-11-10T08:16:54.000Z" } ], "analyses": { "subjects": [ "28A78", "28A80", "11K16" ], "keywords": [ "bernoulli convolutions", "salem number", "multifractal analysis", "rich multifractal structures", "asymptotically weak separation condition" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.2414F" } } }